Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
1.
J Cardiovasc Nurs ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622769

RESUMO

BACKGROUND: The Self-Care of Heart Failure Index (SCHFI) is a widely used instrument used to measure self-care in both research and clinical settings. The lack of a psychometric evaluation of the traditional Chinese version of the SCHFI (SCHFI-C) might limit its utilization in non-Mainland Chinese populations such as Hong Kong, Macau, and Taiwan. OBJECTIVE: This study aimed to evaluate the psychometric properties of the SCHFI-C v.7.2. METHODS: Participants included 365 adults with heart failure. Breslin's method of translation was used to translate the SCHFI v.7.2 into traditional Chinese. Exploratory factor analysis was conducted to examine the dimensionality structure of each scale. Then, composite reliability was calculated to assess the reliability of 3 scales. Construct validity was examined by hypothesis testing and known-group comparisons. RESULTS: The results of exploratory factor analysis suggest its multidimensionality of each scale. More specifically, the findings indicated a unique internal structure of the self-care maintenance ("lifestyle-related behaviors" and "consulting behaviors") and self-care management ("self-reliance behaviors" and "help-seeking behaviors") scales. The composite reliability of 3 scales were 0.81, 0.88, and 0.82, respectively, reaching adequate level. As for construct validity, the significant associations between the 3 SCHFI domains and self-care confidence as well as significant group difference among patients of different ages and educational backgrounds supported good construct validity. CONCLUSIONS: This study provides evidence of the reliability and validity of the SCHFI-C v.7.2. The traditional SCHFI-C v.7.2 can serve as a valid and reliable outcome measure to evaluate the effects of self-care-promoting interventions.

2.
ACS Nano ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632691

RESUMO

Dry eye disease (DED) affects a substantial worldwide population with increasing frequency. Current single-targeting DED management is severely hindered by the existence of an oxidative stress-inflammation vicious cycle and complicated intercellular crosstalk within the ocular microenvironment. Here, a nanozyme-based eye drop, namely nanoceria loading cyclosporin A (Cs@P/CeO2), is developed, which possesses long-term antioxidative and anti-inflammatory capacities due to its regenerative antioxidative activity and sustained release of cyclosporin A (CsA). In vitro studies showed that the dual-functional Cs@P/CeO2 not only inhibits cellular reactive oxygen species production, sequentially maintaining mitochondrial integrity, but also downregulates inflammatory processes and repolarizes macrophages. Moreover, using flow cytometric and single-cell sequencing data, the in vivo therapeutic effect of Cs@P/CeO2 was systemically demonstrated, which rebalances the immune-epithelial communication in the corneal microenvironment with less inflammatory macrophage polarization, restrained oxidative stress, and enhanced epithelium regeneration. Collectively, our data proved that the antioxidative and anti-inflammatory Cs@P/CeO2 may provide therapeutic insights into DED management.

3.
iScience ; 27(4): 109469, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577101

RESUMO

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

4.
Blood ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635773

RESUMO

Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. In this study, we investigated the role of tRNA pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By utilizing patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic PUS1 mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA iPSCs and anemia in the MLASA mouse model. Both MLASA iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels due to pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mTOR inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment effectively ameliorated anemia phenotypes in the MLASA patient. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for anemia patients facing challenges related to protein translation.

5.
J Immunother Cancer ; 12(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38443094

RESUMO

BACKGROUND: Over 50% of patients with relapsed or refractory large B-cell lymphoma (r/r LBCL) receiving CD19-targeted chimeric antigen receptor (CAR19) T-cell therapy fail to achieve durable remission. Early identification of relapse or progression remains a significant challenge. In this study, we prospectively investigate the prognostic value of dynamic circulating tumor DNA (ctDNA) and track genetic evolution non-invasively, for the first time in an Asian population of r/r patients undergoing CAR19 T-cell therapy. METHODS: Longitudinal plasma samples were prospectively collected both before lymphodepletion and at multiple timepoints after CAR19 T-cell infusion. ctDNA was detected using a capture-based next-generation sequencing which has been validated in untreated LBCL. RESULTS: The study enrolled 23 patients with r/r LBCL and collected a total of 101 ctDNA samples. Higher pretreatment ctDNA levels were associated with inferior progression-free survival (PFS) (p=0.031) and overall survival (OS) (p=0.023). Patients with undetectable ctDNA negative (ctDNA-) at day 14 (D14) achieved an impressive 3-month complete response rate of 77.8% vs 22.2% (p=0.015) in patients with detectable ctDNA positive (ctDNA+), similar results observed for D28. CtDNA- at D28 predicted significantly longer 1-year PFS (90.9% vs 27.3%; p=0.004) and OS (90.9% vs 49.1%; p=0.003) compared with patients who remained ctDNA+. Notably, it is the first time to report that shorter ctDNA fragments (<170 base pairs) were significantly associated with poorer PFS (p=0.031 for D14; p=0.002 for D28) and OS (p=0.013 for D14; p=0.008 for D28) in patients with LBCL receiving CAR T-cell therapy. Multiple mutated genes exhibited an elevated prevalence among patients with progressive disease, including TP53, IGLL5, PIM1, BTG1, CD79B, GNA13, and P2RY8. Notably, we observed a significant correlation between IGLL5 mutation and inferior PFS (p=0.008) and OS (p=0.014). CONCLUSIONS: Our study highlights that dynamic ctDNA monitoring during CAR T-cell therapy can be a promising non-invasive method for early predicting treatment response and survival outcomes. Additionally, the ctDNA mutational profile provides novel insights into the mechanisms of tumor-intrinsic resistance to CAR19 T-cell therapy.


Assuntos
DNA Tumoral Circulante , Linfoma Difuso de Grandes Células B , Humanos , DNA Tumoral Circulante/genética , Imunoterapia Adotiva , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/terapia , Genômica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia
6.
BMC Genomics ; 25(1): 317, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549059

RESUMO

BACKGROUND: The growth-regulating factor-interacting factor (GIF) gene family plays a vital role in regulating plant growth and development, particularly in controlling leaf, seed, and root meristem homeostasis. However, the regulatory mechanism of heteromorphic leaves by GIF genes in Populus euphratica as an important adaptative trait of heteromorphic leaves in response to desert environment remains unknown. RESULTS: This study aimed to identify and characterize the GIF genes in P. euphratica and other five Salicaceae species to investigate their role in regulating heteromorphic leaf development. A total of 27 GIF genes were identified and characterized across six Salicaceae species (P. euphratica, Populus pruinose, Populus deltoides, Populus trichocarpa, Salix sinopurpurea, and Salix suchowensis) at the genome-wide level. Comparative genomic analysis among these species suggested that the expansion of GIFs may be derived from the specific Salicaceae whole-genome duplication event after their divergence from Arabidopsis thaliana. Furthermore, the expression data of PeGIFs in heteromorphic leaves, combined with functional information on GIF genes in Arabidopsis, indicated the role of PeGIFs in regulating the leaf development of P. euphratica, especially PeGIFs containing several cis-acting elements associated with plant growth and development. By heterologous expression of the PeGIF3 gene in wild-type plants (Col-0) and atgif1 mutant of A. thaliana, a significant difference in leaf expansion along the medial-lateral axis, and an increased number of leaf cells, were observed between the overexpressed plants and the wild type. CONCLUSION: PeGIF3 enhances leaf cell proliferation, thereby resulting in the expansion of the central-lateral region of the leaf. The findings not only provide global insights into the evolutionary features of Salicaceae GIFs but also reveal the regulatory mechanism of PeGIF3 in heteromorphic leaves of P. euphratica.


Assuntos
Arabidopsis , Populus , Salicaceae , Salix , Salicaceae/genética , Folhas de Planta , Salix/genética , Genômica , Regulação da Expressão Gênica de Plantas
7.
J Agric Food Chem ; 72(13): 7033-7042, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507725

RESUMO

Asthma is recognized as a chronic respiratory illness characterized by airway inflammation and airway hyperresponsiveness. Wogonoside, a flavonoid glycoside, is reported to significantly alleviate the inflammation response and oxidative stress. Herein, this study aimed to investigate the therapeutic effect and underlying mechanism of wogonoside on airway inflammation and mucus hypersecretion in a murine asthma model and in human bronchial epithelial cells (16HBE). BALB/c mice were sensitized and challenged with ovalbumin (OVA). Pulmonary function and the number of cells in the bronchoalveolar lavage fluid (BALF) were examined. Pathological changes in lung tissue in each group were evaluated via hematoxylin and eosin and periodic acid-Schiff staining, and changes in levels of cytokines in BALF and of immunoglobulin E in serum were determined via an enzyme-linked immunosorbent assay. The expression of relevant genes in lung tissue was analyzed via real-time PCR. Western blotting and immunofluorescence were employed to detect the expression of relevant proteins in lung tissue and 16HBE cells. Treatment with 10 and 20 mg/kg wogonoside significantly attenuated the OVA-induced increase of inflammatory cell infiltration, mucus secretion, and goblet cell percentage and improved pulmonary function. Wogonoside treatment reduced the level of T-helper 2 cytokines including interleukin (IL)-4, IL-5, and IL-13 in BALF and of IgE in serum and decreased the mRNA levels of cytokines (IL-4, IL-5, IL-6, IL-13, and IL-1ß and tumor necrosis factor-α), chemokines (CCL-2, CCL-11, and CCL-24), and mucoproteins (MUC5AC, MUC5B, and GOB5) in lung tissues. The expression of MUC5AC and the phosphorylation of STAT6 and NF-κB p65 in lung tissues and 16HBE cells were significantly downregulated after wogonoside treatment. Thus, wogonoside treatment may effectively decrease airway inflammation, airway remodeling, and mucus hypersecretion via blocking NF-κB/STAT6 activation.


Assuntos
Asma , Flavanonas , Glucosídeos , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Ovalbumina/efeitos adversos , Ovalbumina/metabolismo , Interleucina-13 , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-5/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/genética , Pulmão/metabolismo , Inflamação/metabolismo , Muco/metabolismo , Citocinas/genética , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
8.
Transl Vis Sci Technol ; 13(3): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517447

RESUMO

Purpose: The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods: The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results: Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions: Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance: By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.


Assuntos
Retinopatia Diabética , Mitofagia , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Glucose/toxicidade , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Humanos
9.
Regen Ther ; 27: 1-11, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38476629

RESUMO

Objective: To investigate the protective effect human umbilical cord mesenchymal stem cells (hUC-MSCs) have on Dexamethasone (Dex)-induced apoptosis in osteogenesis via the Nrf2-ARE signaling pathway. Methods: Glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH) was developed in rats through the administration of lipopolysaccharide and methylprednisolone. The incidence of femoral head necrosis, cavity notch, apoptosis of osteoblasts, and bone density were observed by HE staining, TUNEL staining, and Micro-CT. HUC-MSCs were co-cultured with mouse pre-osteoblast MC3T3-E1. The survival rate of osteoblasts was determined by CCK8, and apoptosis and ROS levels of osteoblasts were determined by flow cytometer. The viability of antioxidant enzymes SOD, GSH-Px, and CAT was analyzed by biochemistry. Nrf2 expression levels and those of its downstream proteins and apoptosis-related proteins were analyzed by Western blotting. Results: In rats, hUC-MSCs can reduce the rates of empty bone lacuna and osteoblast apoptosis that are induced by glucocorticoids (GCs), while reducing the incidence of GC-ONFH. hUC-MSCs can significantly improve the survival rate and antioxidant SOD, GSH-Px, and CAT activity of MC3T3-E1 cells caused by Dex, and inhibit apoptosis and oxidative stress levels. In addition, hUC-MSCs can up-regulate the expression of osteoblast antioxidant protein Nrf2 and its downstream protein HO-1, NQO-1, GCLC, GCLM, and apoptosis-related protein bcl-2, while also down-regulating the expression of apoptosis-related protein bax, cleaved caspase-3, cleaved caspase-9, and cytochrome C in MC3T3-E1 cells. hUC-MSCs improve the ability of MC3T3-E1 cells to mineralize to osteogenesis. However, the promoting effects of hUC-MSCs were abolished following the blocking of the Nrf2-ARE signaling pathway for osteoblasts. Conclusion: The results reveal that hUC-MSCs can reduce Dex-induced apoptosis in osteoblasts via the Nrf2-ARE signaling pathway.

10.
World J Gastrointest Surg ; 16(2): 289-306, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463362

RESUMO

BACKGROUND: Phospholipase A2 (PLA2) enzymes are pivotal in various biological processes, such as lipid mediator production, membrane remodeling, bioenergetics, and maintaining the body surface barrier. Notably, these enzymes play a significant role in the development of diverse tumors. AIM: To systematically and comprehensively explore the expression of the PLA2 family genes and their potential implications in cholangiocarcinoma (CCA). METHODS: We conducted an analysis of five CCA datasets from The Cancer Genome Atlas and the Gene Expression Omnibus. The study identified differentially expressed genes between tumor tissues and adjacent normal tissues, with a focus on PLA2G2A and PLA2G12B. Gene Set Enrichment Analysis was utilized to pinpoint associated pathways. Moreover, relevant hub genes and microRNAs for PLA2G2A and PLA2G12B were predicted, and their correlation with the prognosis of CCA was evaluated. RESULTS: PLA2G2A and PLA2G12B were discerned as differentially expressed in CCA, manifesting significant variations in expression levels in urine and serum between CCA patients and healthy individuals. Elevated expression of PLA2G2A was correlated with poorer overall survival in CCA patients. Additionally, the study delineated pathways and miRNAs associated with these genes. CONCLUSION: Our findings suggest that PLA2G2A and PLA2G12B may serve as novel potential diagnostic and prognostic markers for CCA. The increased levels of these genes in biological fluids could be employed as non-invasive markers for CCA, and their expression levels are indicative of prognosis, underscoring their potential utility in clinical settings.

11.
Hortic Res ; 11(3): uhae034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38544549

RESUMO

The Populus pruinosa is a relic plant that has managed to survive in extremely harsh desert environments. Owing to intensifying global warming and desertification, research into ecological adaptation and speciation of P. pruinosa has attracted considerable interest, but the lack of a chromosome-scale genome has limited adaptive evolution research. Here, a 521.09 Mb chromosome-level reference genome of P. pruinosa was reported. Genome evolution and comparative genomic analysis revealed that tandemly duplicated genes and expanded gene families in P. pruinosa contributed to adaptability to extreme desert environments (especially high salinity and drought). The long terminal repeat retrotransposons (LTR-RTs) inserted genes in the gene body region might drive the adaptive evolution of P. pruinosa and species differentiation in saline-alkali desert environments. We recovered genetic differentiation in the populations of the northern Tianshan Mountain and southern Tianshan Mountain through whole-genome resequencing of 156 P. pruinosa individuals from 25 populations in China. Further analyses revealed that precipitation drove the local adaptation of P. pruinosa populations via some genetic sites, such as MAG2-interacting protein 2 (MIP2) and SET domain protein 25 (SDG25). This study will provide broad implications for adaptative evolution and population studies by integrating internal genetic and external environmental factors in P. pruinosa.

12.
Nat Commun ; 15(1): 1646, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388532

RESUMO

Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.


Assuntos
Adipócitos Bege , Adipogenia , Animais , Masculino , Camundongos , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Termogênese/genética
13.
Respir Res ; 25(1): 76, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317239

RESUMO

BACKGROUND: Asthma is a heterogeneous disease characterized by airway inflammation and remodeling, whose pathogenetic complexity was associated with abnormal responses of various cell types in the lung. The specific interactions between immune and stromal cells, crucial for asthma pathogenesis, remain unclear. This study aims to determine the key cell types and their pathological mechanisms in asthma through single-cell RNA sequencing (scRNA-seq). METHODS: A 16-week mouse model of house dust mite (HDM) induced asthma (n = 3) and controls (n = 3) were profiled with scRNA-seq. The cellular composition and gene expression profiles were assessed by bioinformatic analyses, including cell enrichment analysis, trajectory analysis, and Gene Set Enrichment Analysis. Cell-cell communication analysis was employed to investigate the ligand-receptor interactions. RESULTS: The asthma model results in airway inflammation coupled with airway remodeling and hyperresponsiveness. Single-cell analysis revealed notable changes in cell compositions and heterogeneities associated with airway inflammation and remodeling. GdT17 cells were identified to be a primary cellular source of IL-17, related to inflammatory exacerbation, while a subpopulation of alveolar macrophages exhibited numerous significantly up-regulated genes involved in multiple pathways related to neutrophil activities in asthma. A distinct fibroblast subpopulation, marked by elevated expression levels of numerous contractile genes and their regulators, was observed in increased airway smooth muscle layer by immunofluorescence analysis. Asthmatic stromal-immune cell communication significantly strengthened, particularly involving GdT17 cells, and macrophages interacting with fibroblasts. CXCL12/CXCR4 signaling was remarkedly up-regulated in asthma, predominantly bridging the interaction between fibroblasts and immune cell populations. Fibroblasts and macrophages could jointly interact with various immune cell subpopulations via the CCL8/CCR2 signaling. In particular, fibroblast-macrophage cell circuits played a crucial role in the development of airway inflammation and remodeling through IL1B paracrine signaling. CONCLUSIONS: Our study established a mouse model of asthma that recapitulated key pathological features of asthma. ScRNA-seq analysis revealed the cellular landscape, highlighting key pathological cell populations associated with asthma pathogenesis. Cell-cell communication analysis identified the crucial ligand-receptor interactions contributing to airway inflammation and remodeling. Our findings emphasized the significance of cell-cell communication in bridging the possible causality between airway inflammation and remodeling, providing valuable hints for therapeutic strategies for asthma.


Assuntos
Asma , Camundongos , Animais , Ligantes , Asma/tratamento farmacológico , Pulmão/metabolismo , Inflamação/metabolismo , Comunicação Celular , Análise de Célula Única , Remodelação das Vias Aéreas/fisiologia , Pyroglyphidae , Modelos Animais de Doenças
14.
Scand J Gastroenterol ; : 1-8, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318873

RESUMO

BACKGROUND: Occult pancreaticobiliary reflux (OPBR) has a significant correlation with diseases of the gallbladder and biliary system. This study examined the incidence of OPBR by age in patients with benign gallbladder diseases. METHODS: We assessed 475 patients with benign gallbladder diseases who underwent surgery at Shanghai East Hospital from December 2020 to December 2021. Bile samples collected during surgery were tested for amylase. Patients with bile amylase >110 U/L (n = 64) were classified as the OPBR group; the rest (n = 411) as controls. RESULTS: Of the participants, 375 had gallbladder stone (GS), 170 had gallbladder polyp (GP), and 49 had gallbladder adenomyomatosis (GA). The OPBR group was generally older, with OPBR incidence increasing with age, peaking post-45. Rates by age were: 4.9% (<35), 5.2% (35-44), 20.7% (45-54), 22.5% (55-64) and 17.6% (≥65), mainly in GS patients. ROC analysis for predicting OPBR by age yielded an area under the curve of 0.656, optimal cut-off at 45 years. Logistic regression indicated age > 45, GP, male gender, and BMI ≥ 24 kg*m-2 as independent OPBR predictors in GS patients. Based on these variables, a predictive nomogram was constructed, and its effectiveness was validated using the ROC curve, calibration curve and decision curve analysis (DCA). Further stratification revealed that among GS patients ≤ 45, concurrent GA was an OPBR risk; for > 45, it was GP and male gender. CONCLUSIONS: The incidence of OPBR in GS patients is notably influenced by age, with those over 45, especially males without GP, being at heightened risk.

15.
Eur J Pharmacol ; 968: 176354, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316248

RESUMO

Sepsis is a life-threatening condition involving dysfunctional organ responses stemming from dysregulated host immune reactions to various infections. The lungs are most prone to failure during sepsis, resulting in acute lung injury (ALI). ALI is associated with oxidative stress and inflammation, and current therapeutic strategies are limited. To develop a more specific treatment, this study aimed to synthesise Prussian blue nanozyme (PBzyme), which can reduce oxidative stress and inflammation, to alleviate ALI. PBzyme with good biosafety was synthesised using a modified hydrothermal method. PBzyme was revealed to be an activator of haem oxygenase-1 (HO-1), improving survival rate and ameliorating lung injury in mice. Zinc protoporphyrin, an inhibitor of HO-1, inhibited the prophylactic therapeutic efficacy of PBzyme on ALI, and affected the nuclear factor-κB signaling pathway and activity of HO-1. This study demonstrates that PBzyme can alleviate oxidative stress and inflammation through HO-1 and has a prophylactic therapeutic effect on ALI. This provides a new strategy and direction for the clinical treatment of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Ferrocianetos , Sepse , Camundongos , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Heme Oxigenase-1/metabolismo , Pulmão , Inflamação/complicações , Inflamação/tratamento farmacológico , Sepse/complicações , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo
16.
BMC Cancer ; 24(1): 273, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409035

RESUMO

BACKGROUND: Traditional nanodrug delivery systems have some limitations, such as eliciting immune responses and inaccuracy in targeting tumor microenvironments. MATERIALS AND METHODS: Targeted drugs (Sorafenib, Sora) nanometers (hollow mesoporous silicon, HMSN) were designed, and then coated with platelet membranes to form aPD-1-PLTM-HMSNs@Sora to enhance the precision of drug delivery systems to the tumor microenvironment, so that more effective immunotherapy was achieved. RESULTS: These biomimetic nanoparticles were validated to have the same abilities as platelet membranes (PLTM), including evading the immune system. The successful coating of HMSNs@Sora with PLTM was corroborated by transmission electron microscopy (TEM), western blot and confocal laser microscopy. The affinity of aPD-1-PLTM-HMSNs@Sora to tumor cells was stronger than that of HMSNs@Sora. After drug-loaded particles were intravenously injected into hepatocellular carcinoma model mice, they were demonstrated to not only directly activate toxic T cells, but also increase the triggering release of Sora. The combination of targeted therapy and immunotherapy was found to be of gratifying antineoplastic function on inhibiting primary tumor growth. CONCLUSIONS: The aPD-1-PLTM-HMSNs@Sora nanocarriers that co-delivery of aPD-1 and Sorafenib integrates unique biomimetic properties and excellent targeting performance, and provides a neoteric idea for drug delivery of personalized therapy for primary hepatocellular carcinoma (HCC).


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animais , Camundongos , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Biomimética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral
17.
BMC Gastroenterol ; 24(1): 5, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166630

RESUMO

INTRODUCTION: Pancreaticobiliary reflux (PBR) can induce gallstone formation; however, its pathogenic mechanism remains unclear. In this study, we explored the mechanism of PBR by the non-targeted metabolomic analysis of bile in patients with PBR. OBJECTIVE: The aim of this study was to investigate the pathogenic mechanism in PBR by the non-targeted metabolomic analysis of bile collected during surgery. METHODS: Sixty patients who underwent gallstone surgery at our center from December 2020 to May 2021 were enrolled in the study. According to the level of bile amylase, 30 patients with increased bile amylase ( > 110 U/L) were classified into the PBR group, and the remaining 30 patients were classified into the control group (≤ 110 U/L). The metabolomic analysis of bile was performed. RESULTS: The orthogonal projections to latent structure-discriminant analysis of liquid chromatography mass spectrometry showed significant differences in bile components between the PBR and control groups, and 40 metabolites were screened by variable importance for the projection value (VIP > 1). The levels of phosphatidylcholine (PC) and PC (20:3(8Z,11Z,14Z)/14:0) decreased significantly, whereas the levels of lysoPC (16:1(9z)/0:0), lysoPC (15:0), lysoPC (16:0), palmitic acid, arachidonic acid, leucine, methionine, L-tyrosine, and phenylalanine increased. CONCLUSIONS: Significant differences in bile metabolites were observed between the PBR and control groups. Changes in amino acids and lipid metabolites may be related to stone formation and mucosal inflammation.


Assuntos
Bile , Cálculos Biliares , Humanos , Cálculos Biliares/cirurgia , Cálculos Biliares/metabolismo , Metabolômica/métodos , 60705 , Amilases
18.
Lipids Health Dis ; 23(1): 28, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273354

RESUMO

BACKGROUND: As independent and correctable risk factors, disturbances in lipid metabolism are significantly associated with type 2 diabetes mellitus (T2DM). This research investigated the mechanism underlying the lipid-regulating effects of Yam Gruel in diabetic rats. METHODS: First, rats in the control group were given a normal diet, and a diabetic rat model was established via the consumption of a diet that was rich in both fat and sugar for six weeks followed by the intraperitoneal injection of streptozotocin (STZ). After the model was established, the rats were divided into five distinct groups: the control group, model group, Yam Gruel (SYZ) group, metformin (MET) group, and combined group; each treatment was administered for six weeks. The fasting blood glucose (FBG), body and liver weights as well as liver index of the rats were determined. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), aspartic acid transaminase (AST), alanine aminotransferase (ALT), and nonesterified fatty acid (NEFA) levels were measured. Oil Red O staining was used to assess hepatic steatosis. In addition, the levels of Phospho-acetyl-CoA carboxylase (p-ACC), acetyl coenzyme A carboxylase (ACC), AMP-activated protein kinase (AMPK), Phospho-AMPK (p-AMPK), carnitine palmitoyl transferase I (CPT-1), and Malonyl-CoA decarboxylase (MLYCD) in liver tissues were measured by real-time PCR (q-PCR) and western blotting. RESULTS: After 6 weeks of treatment, Yam Gruel alone or in combination with metformin significantly reduced FBG level, liver weight and index. The concentrations of lipid indices (TG, TC, NEFA, and LDL-C), the levels of liver function indices (ALT and AST) and the degree of hepatic steatosis was improved in diabetic rats that were treated with Yam Gruel with or without metformin. Furthermore, Yam Gruel increased the protein levels of p-ACC/ACC, p-AMPK/AMPK, MLYCD, and CPT-1, which was consistent with the observed changes in gene expression. Additionally, the combination of these two agents was significantly more effective in upregulating the expression of AMPK pathway-related genes and proteins. CONCLUSIONS: These results demonstrated that Yam Gruel may be a potential diet therapy for improving lipid metabolism in T2DM patients and that it may exert its effects via AMPK/ACC/CPT-1 pathway activation. In some respects, the combination of Yam Gruel and metformin exerted more benefits effects than Yam Gruel alone.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dioscorea , Fígado Gorduroso , Transtornos do Metabolismo dos Lipídeos , Metformina , Humanos , Ratos , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Dioscorea/metabolismo , Metabolismo dos Lipídeos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos não Esterificados/metabolismo , LDL-Colesterol/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Triglicerídeos/metabolismo , Dieta Hiperlipídica/efeitos adversos
19.
J Exp Clin Cancer Res ; 43(1): 25, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246990

RESUMO

BACKGROUND: Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS: GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS: Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS: DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.


Assuntos
Antagonistas de Dopamina , Glioblastoma , Glioma , Proteínas Proto-Oncogênicas c-myc , Animais , Humanos , Camundongos , Encéfalo , Proteínas Estimuladoras de Ligação a CCAAT/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dopamina , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Camundongos Nus , Família Multigênica , Receptores de Dopamina D1/antagonistas & inibidores , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Proteínas Proto-Oncogênicas c-myc/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo
20.
Br J Radiol ; 97(1153): 274-282, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263841

RESUMO

OBJECTIVES: To validate the feasibility of intravoxel incoherent motion imaging (IVIM) for monitoring renal injury and uric acid-lowering efficacy in a rat model of hyperuricaemia. METHODS: A total of 92 rats were analysed and categorized into 4 groups: control (CON), hyperuricaemia (HUA), allopurinol intervention (ALL), and combined intervention (COM). Eight rats were randomly selected from each group and underwent IVIM scanning on days 0, 1, 3, 5, 7, and 9. Quantitative magnetic resonance values (D, D*, and f values) measured from the different renal anatomical regions. Quantitative histopathological analysis was performed to assess renal tubular injury using neutrophil gelatinase-associated lipocalin (NGAL), and renal fibrosis using alpha-smooth-muscle-actin (α-SMA). Pearson's correlation analysis was used to determine the correlation between IVIM-derived parameters and the expression of NGAL and α-SMA. RESULTS: The D values of the HUA, ALL, and COM groups generally showed a downward trend over time, and this fluctuation was most significant in the HUA group. The D values showed significant intergroup differences at each point, whereas only a few discrepancies were found in the D* and f values. In addition, the renal D value was negatively correlated with the positive staining rates for NGAL and α-SMA (P < .05), except for the lack of correlation between Dos and α-SMA (P > .05). CONCLUSION: IVIM could be a noninvasive and potential assessment modality for the evaluation of renal injury induced by hyperuricaemia and its prognostic efficacy. ADVANCES IN KNOWLEDGE: IVIM could be a surrogate manner in monitoring renal damage induced by hyperuricaemia and its treatment evaluation.


Assuntos
Hiperuricemia , Animais , Ratos , Lipocalina-2 , Ácido Úrico , Rim , Diagnóstico por Imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...